Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene

نویسندگان

  • Kathrin A. Schmohl
  • Aayush Gupta
  • Geoffrey K. Grünwald
  • Marija Trajkovic-Arsic
  • Kathrin Klutz
  • Rickmer Braren
  • Markus Schwaiger
  • Peter J. Nelson
  • Manfred Ogris
  • Ernst Wagner
  • Jens T. Siveke
  • Christine Spitzweg
چکیده

The theranostic sodium iodide symporter (NIS) gene allows detailed molecular imaging of transgene expression and application of therapeutic radionuclides. As a crucial step towards clinical application, we investigated tumor specificity and transfection efficiency of epidermal growth factor receptor (EGFR)-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human disease. PDAC was induced in mice by pancreas-specific activation of constitutively active KrasG12D and deletion of Trp53. We used tumor-targeted polyplexes (LPEI-PEG-GE11/NIS) based on linear polyethylenimine, shielded by polyethylene glycol and coupled with the EGFR-specific peptide ligand GE11, to target a NIS-expressing plasmid to high EGFR-expressing PDAC. In vitro iodide uptake studies in cell explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 123I gamma camera imaging and three-dimensional high-resolution 124I PET showed significant tumor-specific accumulation of radioiodide after systemic LPEI-PEG-GE11/NIS injection. Administration of 131I in LPEI-PEG-GE11/NIS-treated mice resulted in significantly reduced tumor growth compared to controls as determined by magnetic resonance imaging, though survival was not significantly prolonged. This study opens the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC after systemic non-viral NIS gene delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal stem cell-mediated, tumor stroma-targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as theranostic gene.

UNLABELLED The tumor-homing property of mesenchymal stem cells (MSCs) allows targeted delivery of therapeutic genes into the tumor microenvironment. The application of sodium iodide symporter (NIS) as a theranostic gene allows noninvasive imaging of MSC biodistribution and transgene expression before therapeutic radioiodine application. We have previously shown that linking therapeutic transgen...

متن کامل

EGFR-targeted nonviral NIS gene transfer for bioimaging and therapy of disseminated colon cancer metastases

Liver metastases present a serious problem in the therapy of advanced colorectal cancer (CRC), as more than 20% of patients have distant metastases at the time of diagnosis with less than 5% being cured. Consequently, new therapeutic approaches are of major need together with high-resolution imaging methods that allow highly specific detection of small metastases. The unique combination of repo...

متن کامل

Targeted radioiodine therapy of neuroblastoma tumors following systemic nonviral delivery of the sodium iodide symporter gene.

PURPOSE We recently reported the significant therapeutic efficacy of radioiodine therapy in various tumor mouse models following transcriptionally targeted sodium iodide symporter (NIS) gene transfer. These studies showed the high potential of NIS as a novel diagnostic and therapeutic gene for the treatment of extrathyroidal tumors. As a next crucial step towards clinical application of NIS-med...

متن کامل

Hypoxia-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated sodium iodide symporter gene delivery

Adoptively transferred mesenchymal stem cells (MSCs) home to solid tumors. Biologic features within the tumor environment can be used to selectively activate transgenes in engineered MSCs after tumor invasion. One of the characteristic features of solid tumors is hypoxia. We evaluated a hypoxia-based imaging and therapy strategy to target expression of the sodium iodide symporter (NIS) gene to ...

متن کامل

The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies

Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral, and cell-based therapies. There are several reporter systems available; however, those employin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017